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ABSTRACT 

A convex body K C R d is called reduced if for each convex body K'C K, 
K' # K, the width of K' is less than the width of K. We prove that reduced body 
K is of constant width if (i) the body K has a supporting sphere almost 
everywhere in aK. (The radius of the sphere may vary with the point in aK; the 
condition (i) and strict convexity do not imply each other.) 

§1. The results 

1.1. In 1978, Heil posed the following problem [4, Problem 27]. 

A convex body K C R ~ is called reduced if for each convex body K 'C  K, 

K ' #  K, the width of K' is less than the width of K. Is it true that each strictly 

convex reduced body K is of constant width? (Strict convexity means that aK 

contains no segments. Obviously each body of constant width is reduced.) 

For dimension d = 2, the Heil problem was solved (in the affirmative) in [2]. 

Some other related facts are as follows. If a convex (not necessarily strictly 
convex) reduced body has a smooth boundary then it is of constant width (and 

for that is strictly convex in fact). That was indicated by Heil [5, §2] in 1978 and 
proved by Groemer [3, §5] in 1983. An example of the equilateral triangle shows 

that there exist convex reduced bodies not of constant width. 
Here we deal with the problem in which the strict convexity is substituted by 

an almost spherical convexity defined below, 

1.2. Let C C R d be a compact convex d-dimensional body. A point p E aC 

will be called regular if C has unique supporting hyperplane at p. 
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Let p ~ 0C and let H be a supporting hyperplane of C at p. Suppose there 

exists a compact ball B of radius R tangent to H at p and such that C iq N C B 

for a (d-dimensional) neighbourhood N of p. We will say then that C has an 

R-support (aB) at p or that the sphere OB supports C at p. If C is supported by 

a sphere almost everywhere in OC (the radius of the sphere can vary from point 

to point), we will call C almost spherically convex. (Note that if C is supported by 

a sphere at each point of 0C then C is clearly strictly convex.) We prove the 
following theorem. 

1.3. THEOREM. Let A C R ~ be a compact d-dimensional reduced almost 

spherically convex body. Then A is of constant width. 

The theorem follows easily (see 1.8) from Theorems 1.6 and 1.7 below. 

It is known that a body of a constant width W has a spherical support (of 

radius W) at each of its boundary points. Therefore Theorem 1.3 is a 

characterization of constant width. 
Note that strict convexity and almost spherical convexity do not follow from 

each other. An example of an almost spherically convex but not strictly convex 

body is as follows. 
Let x, y, z be Cartesian coordinates in R 3. Define a surface S by the equations 

x = (1 - y2)sin 2~b, z = (1 - y2)(1 + cos2~) 

where the parameters ~, y vary in the open rectangle - ~ r / 2 <  ~ < Ir[2, 
- 1 < y < 1. Thus this surface is formed by a parabola passing through the points 

(0, - 1, 0) and (0, 1, 0) as its vertex slides along the circumference of unit radius in 

the xz-plane centered at the point (0,0, 1). 
A straightforward calculation shows that the Gauss curvature of S is positive. 

Therefore the body bounded by S and by the segment with ends (0, - 1, 0) and 
(0, 1,0) is almost spherically convex but obviously not strictly convex. 

However, for d = 2, almost spherical convexity obviously implies strict 

convexity. 
An example of a strictly convex but not almost spherically convex figure in R ~ 

is given in 3.7. (A similar example can be found in [8].) 

A simple consequence of Theorem 1.3 and Theorem 1.6 below is also the 

following partial solution of the original Heil problem, see §4. 

1.4. THEOREM. Let K C R ~ be a compact d-dimensional reduced body. Sup- 

pose K is strictly convex and almost every point of OK has a neighbourhood within 

which OK is a C2-hypersurface. (That takes place, say, when OK is piecewise C2.) 

Then K is of constant width. 
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1.5. It follows easily from [1, §2, §3] that almost every boundary point p of a 

compact d-dimensional convex body C C R ~ is regular and one can introduce in 

R ~ Cartesian coordinates £, z where g = (Xl, X2,...,Xd-l) with the following 

properties. 

(i) The point p is the origin of the system; the i -plane coincides with the 

tangent plane at p and the z-axis shows towards int C. 

(ii) A neighbourhood of p on the surface 0C is given by the equation 

1 d--I 
(1.5.1) z = z ( g ) = 2  ~=~ k,x~+ e" Igl 2 

where g varies in a domain D containing the origin, z(g) is a convex function, 

k~=>0and e = e ( 2 )  >0. 

(iii) Let zi = zi (g), J /E D, i = 1, 2 . . . . .  d - 1, denote Oz/Ox~ where it exists, 

and any value between the left and the right derivative Oz[Ox~ inclusively where 

the derivative Oz/Ox~ does not exist. Then z~ (~) is differentiable at the origin 8 

and 

OZ~ Oz~ 
z, (0 )  = o,  (8 )  = k , ,  - -  (0 )  = 0 

Oxj 

(1.5.2) 
f o r i = l , 2  . . . . .  d - 1  and j # i .  

Such a point p will be called a CLpoint. 

1.6. THEOREM. Let K C R ~ be a compact d-dimensional reduced body of 
width W. Suppose there exists a dense set M in OK of regular points such that 

a E M implies that a is the only common point of K and the tangent plane at a. If  

K is supported by a sphere at a C2-point p E OK then K has an R-support at p for 

any R > W. 

Theorem 1.6 is proved in 2.3 and 2.4 

1.7. TrmOREM. Let K C R ~ be a compact d-dimensional reduced body of 

width W. Suppose K has an R -support for any R > W almost everywhere in OK. 
Then K is of constant width. 

Theorem 1.7 is proved in 3.6. 

1.8. PROOF OF THEOREM 1.3. According to 1.5, the set of C2-points is of full 

measure in OA. The set of points where A is supported by a sphere is also of full 

measure. Therefore the intersection I of the two sets is of full measure. Clearly I 

can be regarded as the set M in Theorem 1.6. By Theorem 1.6, the body A has 
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an R-support for any R > W at any point p E / .  By Theorem 1.7, the body A is 

of constant width. 

In 3.3, 3.4, we prove also the following auxiliary result. 

1.9. THEOREM. Let C C R d be a compact convex d-dimensional body and R 

be a positive number. Suppose C has an R-support almost everywhere in OC. Let p 

be an arbitrary point in 3C and let H be a supporting hyperplane of C at p. Denote 

by B the compact ball of radius R tangent to H at p and lying with C on the same 

side of H. Then C C B. 

§2. Curvature of the boundary of a reduced body 

2.1. We denote by xy both the closed segment with the ends x, y and its 

length. For a compact convex d-dimensional body C C R d and a unit vector u, 

we will denote by w(C,u)  the width of C in the direction u. Put A(C)=  

min,~s d-1 w ( C, u ). 

A segment pq will be called a chord of C if p E ~C, q E aC. We will say that a 

chord pq is generated by a direction u if p E/-/i,  q E He where HI and/-/2 are 

the supporting hyperplanes orthogonal to u. 

The following two remarks are well known. 

REMARK A. Let C~, x ~ [x,, x2], be a continuous family of compact convex 

d-dimensional sets in R ~ and let u E S d-1 be a direction. Then w(Cx, u) is a 

continuous function in the domain [x~, x2] x S d-1. 

REMARK B. If w(C, u) = A(C) then among the chords generated by u there 

is one having direction u and length A(C). Such a chord is obviously unique if 

one of the two supporting planes orthogonal to u has only one common point 

with C. That point is an end of the chord. 

2.2. LEMMA. Let K C R d be a compact d-dimensional reduced body of width 

W. Let p E ~K be a regular point such that the tangent plane T at p satisfies 

T f3 K = p. Denote by u the unit interior normal to aK at p. Then w (K, u) = W. 

PROOF. Suppose to the contrary that 

(2.2.1) w(K, u ) >  W. 

Let Tx, 0 =< x =< W, be the plane parallel to T, intersecting K and distant x from 

T. Let Cx be the compact part of K cut by T~ and satisfying int C~ ~ p. 

Since K is reduced, there is a direction u~ such that 

(2.2.2) w(Cx, u~) = A(C~) < W. 
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By Remark B in 2.1, Cx has a chord pxqx generated by ux having direction ux and 

length A(Cx)< W. One of its ends, say px, belongs to T~ because otherwise 

A(C~) = p~q~ = w (K, ux )>- W in cbntradiction to (2.2.2). One may assume that u~ 

shows from p~ to qx. 

Consider now a sequence x~ > 0, 0 <  x~ < W. The condition T f3 K = p  

implies that p~, ~ p. Uniqueness of T implies easily that the supporting plane 

at p~, orthogonal to ux, converges to T as i---> o0. Therefore  u~, ,_®~ u. Since 

Cx, x E [0, W], is a continuous family and by Remark A in 2.1, one has 

lim w(Cx,, ux,) = w(K,  u ) >  W 

(under our  assumption (2.2.1)). On the other hand, the limit cannot be greater 

than W due to (2.2.2). Thus Lemma 2.2 has been proved. 

2.3. PROOF OF THEOREM 1.6. Consider the representation (1.5.1) for OK in a 

neighbourhood of the point p. Obviously it is enough to show that ki => 1/W, 

i = 1,2 . . . . .  d - 1. Suppose to the contrary that kl < 1/W. Take a point a E OK 

with coordinates (t ,0,0 . . . . .  0, z)  where t > 0  and z = z ( t , 0  . . . .  ,0). Select a 
sequence ai > a, at E M, such that the unit interior normal u~ to OK at the 

point at converges to a unit vector u as i ~ oo. The tangent plane T~ at a~ 

converges to a supporting plane H at the point a orthogonal to the vector u. Let  

z = z( t ,O, . . .  , 0 )+  m~(x l -  t )+ m 2 x 2 + ' "  + ma-,xa-1 

be an equation of H. Obviously m~ = m~(t) belongs to the closed interval 

between the left and the right derivative Oz (t, 0 . . . .  , O)/Ox~. Therefore  we can put 

zi (t, 0 . . . .  ,0) = m~, i = 1, 2 . . . .  , d - 1, see 1.5(iii). At other points ~ E D, outside 

the positive part of the x~-axis, we define z~ (~) arbitrarily, in compliance with 

1.5(iii). 

By Lemma 2.2, w(K,  u~) = W = A(K). Since K tq T~ = a~ and by Remark B in 

2.1, the body K has a chord a~b~ of length W whose direction (from at to b~) is u~. 

Clearly aib, converges to a chord ab of length W whose direction (from a to b) 

is u. 

2.4. Denote  by h (t) the coordinate z of the point b E OK. Obviously 

(2.4.1) 

h( t )  = z ( t ,O . . . . .  0 ) +  1 + m~ 

Wd-r 
>= z(t,O . . . . .  0)+ W - - ~  ~.= mL 
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By (1.5.1), 

(2.4.2) z(t,O,.. . ,O) =½kit2+ e • t 2 where e = e(t)  '--'° > 0. 

Due to 1.5(iii), 

= z, (t, 0 . . . . .  O) = z, (0) + ~ (0)t + mi Eit 

(2.4.3) [m , -  k,tl < ~ t , [ m 2 [ <  ~t, . . . .  lind-,[ < ~t 

where e, = e,(t) ,--~o 0; 

where g = max [e, 1. 
i 

Inserting (2.4.2) and (2.4.3) into (2.4.1), one has 

W - - ~ [ k 2 + 2 k , ~  + ~2+(d  - 2)~2]t 2 h ( t ) >  lkl t2 + gt2 + 

t 2 
= W + ~ -  [k,(1 - WkO+2e - 2 W k l ~  - W(d - 1)~2]. 

Since K is supported at p by a sphere, one has ki > 0. Due to our contrary 
assumption, 1 -  Wk~ > 0. Therefore h ( t ) >  W when t > 0 is sufficiently small. 
On the other hand, h(t)<= W since the width of K in the direction of the z-axis 

is W according to Lemma 2.2. 

§3. Global R-support 

3.1. LEMMA. Let y(x)  be a convex function in a segment I x -  t I <= 8 and let 
y"(t) exist. Suppose the convex hull of the graph of y(x)  has an R-support in the 
xy-plane at the point (t, y(t)). Then 

(3.1.1) y"(t) => 1 (1 + y'2(t))3/2. 

3.2. PROOF. Having an R-support means obviously that for any A > 0, 

(3.2.1) y ( x ) >  y ( t ) +  y ' ( t ) ( x - t ) +  [ 1  (1+ y'2(t))3n-A] (x- t) 2 
2 

when [ x - t [ ~ 0 is sufficiently small. Since y (x) is convex, it can be represented 

in the form y(x)  = y(t)+f~qb(z)dz, see [6, p. 304]. Therefore, and by [7, p. 337, 

Theorem 2], y(x)  is absolutely continuous (and thus y' exists almost 
every~,here). Now by Lebesgue's Theorem [7, p. 338], 

f. 
(3.2.2) y(x)  = y ( t ) +  y'(z)dz. 
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For those x's where y '  exists, 

(3.2.3) y ' (x)  = y ' ( t )  + y"(t)(x - t )+  e"  (x - t) where e = e (x) > O. 
x ~ t  

Suppose now that (3.1.1) is wrong. Then 

1 Y'2(t))3/~ y"(t) < ~- (1 + - 2A for some A > 0. 

For x ~ t sufficiently close to t, one has l e (x)[ < A and by (3.2.3), 

I-1 1 
yt(x) ~ yt(l)+ L. ~ (1+ yr2(t))3/2 2A] (x - - I )÷  A" (x -- t). 

Along with (3.2.2), that implies 

y(x)< y(t)+ y'(t)(x - t)+ [~---(i+ y'2(t))':'- A ] 
(x i t~2 

2 ' 

which contradicts (3.2.1). 

3.3. PROOF OF THEOREM 1.9. Consider first the case d = 2. Suppose to the 

contrary that CZ B. Clearly, there exists a compact circle B' D B of radius 

R'>R tangent to H at p and such that CZ B'. 

Select a point q ~ 0C as follows. If there exists an arc pYn C 0C, m~ p, 

satisfying p~ A int B' = O then put q = p. Otherwise one can easily find an arc 

~'b C OC such that a ~ OB', b ~ aB', (~b \{a, b})C intB' and ~b belongs to that 

segment of the circle B' bounded by the chord ab whose central aagle is ~ ~'. As 

one moves the circle B' in the direction orthogonal to the chord ab and showing 

from ab to the center of B' ,  there will be a "moment  when OB' intersects the arc 

a"b for the last time." Let q E ab be a point of that intersection. 

It is easy to see that, in both cases, the selected point q E 0C satisfies the 

following conditions. 

(A) There exists an arc q~n C OC such that qYn rl int B '  = 0 .  

(B) The direction of the arc q ~  at q is tangent to OB'. 

3.4. Introduce now Cartesian coordinates in R 2 with the origin at q, the x-axis 

showing in the direction of the arc q~n and the y-axis towards the center of B'.  

Due to the condition (B) in 3.3, a part of the arc q'~ can be given by an equation 

y = y ( x ) ,  x E[0 ,  xo], where y(x)  is a convex function with y ( 0 ) = y ' ( 0 ) = 0 .  

Condition 3.3(A) implies that for any A > 0, 
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X 2 

when x > 0 is sufficiently small. 
As in 3.2, one can see that y' exists almost everywhere and 

• (3.4.2) y(x) = y'(t)dt, x E [0, Xo]. 

Since y(x) is convex, y'(x) is non-decreasing and thus y" exists almost 

everywhere, see [7, Theore.m 1, p. 320]. By [7, Theorem 1, p. 333], 

(3.4.3) y'(x)>= y"(t)dt. 

Recall that C has an R-support almost everywhere in 0C. Therefore, at almost 

every point t in the segment [0, x0], both conditions hold simultaneously: y"(t) 

exists and C has an R-support at its boundary point (t, y(t)). Lemma 3.1 and 

(3.4.3) imply now 

~0 x l  y'(x) = > -~ (l + y'Z(t))3/Zdt>= rX d t= x 
. IoR  R "  

By (3.4.2), 

fo x R X2 y ( x ) =  > dt = 2-- ~ . 

That contradicts (3,4.1) when A < 1/R - 1 / R ' .  

3.5. We prove now Theorem 1.9 for d > 2. Suppose to the contrary that there 

exists a point q E C \ B .  Denote by S d-2 the set of directions (unit vectors) 

parallel to the supporting hyperplane H. Let Pu, u E S ~-2, be the 2-plane 

containing the point p, the center of the ball B and parallel to u. Let v E S ~-2 be 

such that Po ~ q. The fact that C has R-support almost everywhere in 0C and 

Fubini's theorem imply easily that in any neighbourhood of v there exists a 

direction u E S d-2 such that C has R-support almost everywhere in the curve 

acnP.. 
Note that if C is supported at a point x E aC N P. by a sphere Q of radius R 

then the plane figure C O P. is supported at x by the circumference Q n P, of a 

radius R'_-  < R (a version of Meusnier's Theorem). Therefore C O  P. has 

R'-support and consequently R-support at x. Thus the compact convex plane 

figure C n P. has R-support almost everywhere in its boundary. By Theorem 
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1.9 for d = 2, the figure belongs to the circle B n Pu. On the other hand, this is 
impossible when u is close enough to v since C O Pvg B O P~. 

3.6. PROOF OF THEOREM 1.7. Suppose to the contrary that diameter D of K 
satisfies D > W. Fix a chord ab such that ab = D. Since K is supported by a 

sphere almost everywhere in 0K and almost every point in 0K is regular (see 

1.5), there exists a regular point q E OK with a spherical support satisfying 

qb < (D - W)/3. By Lemma 2.2 and Remark B in 2.1, there exists the (unique) 

point p E OK such that pq = W and the hyperplane H through p orthogonal to 

pq is a supporting hyperplane of K. 

Put R = W + (D - W)/3 and let z E R ~ satisfy pz = R, pz ~ pq. Since K has 

R-support  almost everywhere and by Theorem 1.9, K belongs to the ball of 

radius R centered at z (and thus tangent to H).  Therefore za <= R. One has now 

_•._W D -  W 
D = a b < = a z + z q + q b < R +  +-------~- - D .  

This contradiction completes the proof. 

3.7. We produce now the example of a strictly convex but not almost 

spherically convex figure F C  R 2 mentioned in 1.3. Take a set S C [0,1] of a 

positive measure m such that for any segment [a, b] C [0, 1], the measure of 

S n [a, b] is less than b - a. (S could be a Cantor set under a proper selection of 

the length of the "thrown away" intervals.) Define f: [0, 1]---~ R as follows. Put 

f ( x ) = O  for x E S and f ( x ) =  1 for x E [0,1]\S. Let 

qb(x)= foXf(z)dz, y ( x ) =  foX~p(z)dz. 

The function y (x) is convex since ~b (x) is nondecreasing. By [7, p. 337, Theorem 

2], ~b (x) is absolutely continuous (and thus ~b' exists almost everywhere). By the 

Lebesgue Theorem [7, p. 338], ok(x) = f~ Jp'(z)dz. Along with the definition of ~b, 

this implies that qb'(x)= f (x )  almost everywhere in [0, 1], see [7, Theorem 1, p. 

330]. Continuity of ~b means also that y ' ( x ) =  ~b(x) for any x E [0,1]. Thus 

y"(x) = f (x )  almost everywhere in [0, 1]. Therefore y"(x) = 0 almost everywhere 

in S. 

Since m > 0, the set S* de=f {(x, y(x)) /y"(x)= 0} has a positive measure on the 

graph of y(x). Let now F be a convex figure bounded by that graph and an arc of 

a circumference. Due to (3.1.1), F has no R-support  at any point of S*. Thus, F 
is not almost spherically convex. 

Clearly, dF contains no segments: otherwise, almost everywhere in a segment 
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[a, b] C [0,1], one would have [ ( x )  = y"(x) = 0 which contradicts the definition 

of [. Thus F is strictly convex. 

§4. The case of a good boundary 

4.1. PROOF OF THEOREM 1.4. Denote  by F the set of points having a 

neighbourhood in which OK is C 2. Let kl, k2 . . . . .  k~-i be the principal curvatures 

in F. We show first that the set of the points from F, where k l k 2 . . ,  ku-1 > 0 ,  is 

dense in F. Suppose to the contrary that k l k 2 " "  kd-~ = 0 in a closed neighbour- 

hood N C F of a point m E F. Due to strict convexity of K, the spherical 

representat ion s: F--> S d-I is one-to-one. Therefore  the distance e (measured in 

S a-~) between s ( m )  and s(ON) is positive. Clearly s ( N )  contains the metric ball 

of radius e centered at s ( m )  and thus has a positive (d - 1)-area A. On the other 

hand, 

A = fN klk2 . . . .  kd_~dA = O. 

4.2. Obviously K is supported by a sphere at each point of F with 

k l k 2 "  • k~-i > 0. By Theorem 1.6, K has an R-suppor t  at such a point for any R 

greater  than width W of K. Therefore  k~ > 1/W, i = 1,2 . . . . .  d - 1, at this point. 

By continuity of Gauss curvature and due to 4.1, the curvature k l k 2 " "  ka_~ > 

W -d+~ everywhere in F. Thus K is supported by a sphere everywhere in F. By 

Theorem 1.3, K is of constant width. 
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